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Abstract

Many stochastic processes in thermodynamics and information processing can be studied in the language of state transitions, in particular using
majorization conditions. Interestingly, catalysts can also be used to facilitate state transition, enabling extra processes that were otherwise not possible.
However, most studies are concerned about high dimension catalysts, and little is understood about the construction of simple catalys states. This
project aims to explore the power of small catalysts and �nd a way to construct simple catalysts.

Majorization

Majorization is used to determine if the transition between two states
is possible[1]. Let x = (x1, . . . , xd) and y = (y1, . . . , yd) ∈ Rd be d-
dimensional probability vectors with their components arranged in non-
increasing order. In other words, x1 ≥ x2 ≥ . . . ≥ xd and y1 ≥ y2 ≥ . . . ≥
yd. x is said to be majorized by y, written x ≺ y, if:

l∑
i=1

xi ≤
l∑

i=1

yi (1 ≤ l < d) (1)

Since both x and y are probability vectors,
∑d

i=1 xi =
∑d

i=1 yi = 1.
If x is not majorized by y, it is written as x ̸≺ y. A catalyst, z, is a state
that allow y to majorize x if it is added into the system. Namely: x ̸≺ y
but x ⊗ z ≺ y ⊗ z. If there exist such a z, x is said to be trumped by y,
written x ≺T y.
Study shows that x ≺ y if x ≺T y for all states smaller than 4 dimen-
sions[1]. Since x is already majorized by y, there is no need for catalyst.
Therefore, the project focuses on studying 4 dimension states with 2 di-
mension catalysts, which is the smallest dimension where a catalyst starts
to be useful.

Convexity and simple catalyst

Let T2(y) denote the set of vectors x such that x ⊗ z ≺ y ⊗ z is possible
for some z = (p, 1 − p). Next, we introduce the mixing operation, which
indicate the linear interpolation between two variables.

Γλ(a, b) := (1− λ)a+ λb, for all λ ∈ [0, 1]. (2)

Given two vectors x1, x2 ∈ T2(y), we de�ne the mixture of x1, x2 and
z1, z2 as xλ := Γλ(x1, x2) and zλ := Γλ(z1, z2). It is known that T2(y)
is convex[1], therefore xλ ∈ T2(y). However, the convexity of cataysts is
unkown. In other words, even though it is known that xλ can be majorized
by y with some 2D catalyst, it is unsure if xλ⊗zλ ≺ or ̸≺ y⊗zλ. It is only
known that xλ ⊗ z1 ⊗ z2 ≺ y ⊗ z1 ⊗ z2, but this could greatly increase the
dimensios and complexity of the system. This project review the convexity
of the set of catalyst that catalysize xλ, and outlined the condition when
a simple mixing on the catalyst is su�cient for xλ ⊗ zλ ≺ y ⊗ zλ.

Anspach condition

Let y = (y1, y2, y3, y4), x = (x1, x2, x3, x4), z = (p, 1 − p) (p > 0.5).
Anspach shows that for x ̸≺ y but x ⊗ z ≺ y ⊗ z, there should be a
vector ε⃗ = (ε1, ε2, ε3) such that:

Theorem 1 (Anspach)

y1 = x1 + ε1 (3)

y2 = x2 − ε2 − ε3 (4)

y3 = x3 + ε2 + ε3 (5)

y4 = x4 − ε3 (6)

ε1, ε2 > 0, ε3 ≥ 0 (7)

and M ′ ≤ p ≤ m′

m′ = min(
ε1

ε1 + ε2
, 1− y4

y3 + y4 − ε2
,

y1
y1 + y2 + ε2

) (8)

M ′ = max(µa, µb) (9)

where µa =
ε2

ε2 + ε3
, µb =

y2 + ε2
y2 + y3

(10)

The approach

Given x1, x2, y ∈ R4,z1, z2 ∈ R2 such that xi ̸≺ y but xi⊗zi ≺ y⊗zi (i = 1
or 2), xλ,zλ follow the previous notation. Note that ε⃗i and ε⃗2 is the vector
that determines x1, x2 repectively. Let ε⃗λ = Γλ(ε⃗1, ε⃗2), hence M ′

λ and
m′

λ depend on ε⃗λ. Then, the graphs of p agaisnt λ can be plotted as below.

Figure 1: M' and m' convex Figure 2: M' not convex

The red vertical line represent the set of z that can catalyze the respective
x and y pairs. m′

λ and M ′
λ shows the lower and upper boundary of

the catalyst when xλ varies across 0 to 1. pmc := Γλ(m
′
1,m

′
2) and

pMc := Γλ(M
′
1,M

′
2) is the linear interpolation of m′

1,m
′
2 and M ′

1,M
′
2. A

catalyst zλ is said to be convex if the linear interpolation of z1, z2 can
catalyse xλ and y. In other words, if zλ is within the bound of m′

λ and
M ′

λ, then it is convex. Thus, we de�ne the following:

1. the upper bound of the catalyst is convex if m′
λ ≥ pmc.

2. the lower bound of the catalyst is convex if M ′
λ ≤ pMc.

for all λ ∈ [0, 1]. Numerical result shows that covexity over m' and M'
is independent. Therefore we can analysize them separately. For M',
µb ≤ pmc, and µa is always the cause if Mλ is not convex. We then derive
the following:

1. γ(λ) := µa + λ(M ′
1 −M ′

2)

2. if γ(λ) ≤ M ′
1 for all λ ∈ [0, 1], then the lower boundary of catalyst is

convex.

Conclusion

Using the analysis above, we develop an algorithm that examine the con-
vexity of the catalyst over the lower boundary of p (or M').

Figure 3: LC indicate the catalyst is linearly convex over M'.

In short, the convexity of catalyst is achievable under a series of conditions,
and the speci�c algorithm for M' to be convex is provided.
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